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OBJECTIVE—Berberine (BBR) activates AMP-activated pro-
tein kinase (AMPK) and improves insulin sensitivity in rodent
models of insulin resistance. We investigated the mechanism of
activation of AMPK by BBR and explored whether derivatization
of BBR could improve its in vivo efficacy.
RESEARCH DESIGN AND METHODS—AMPK phosphoryla-
tion was examined in L6 myotubes and LKB1�/� cells, with or
without the Ca2�/calmodulin-dependent protein kinase kinase
(CAMKK) inhibitor STO-609. Oxygen consumption was measured in
L6 myotubes and isolated muscle mitochondria. The effect of a BBR
derivative, dihydroberberine (dhBBR), on adiposity and glucose
metabolism was examined in rodents fed a high-fat diet.
RESULTS—We have made the following novel observations: 1)
BBR dose-dependently inhibited respiration in L6 myotubes and
muscle mitochondria, through a specific effect on respiratory
complex I, similar to that observed with metformin and rosigli-
tazone; 2) activation of AMPK by BBR did not rely on the activity
of either LKB1 or CAMKK�, consistent with major regulation at
the level of the AMPK phosphatase; and 3) a novel BBR deriva-
tive, dhBBR, was identified that displayed improved in vivo
efficacy in terms of counteracting increased adiposity, tissue
triglyceride accumulation, and insulin resistance in high-fat–fed
rodents. This effect is likely due to enhanced oral bioavailability.
CONCLUSIONS—Complex I of the respiratory chain represents
a major target for compounds that improve whole-body insulin

sensitivity through increased AMPK activity. The identification of
a novel derivative of BBR with improved in vivo efficacy high-
lights the potential importance of BBR as a novel therapy for the
treatment of type 2 diabetes. Diabetes 57:1414–1418, 2008

I
nsulin resistance is a major metabolic abnormality
leading to type 2 diabetes, and, as such, there is
considerable interest in the discovery of insulin-
sensitizing agents to aid in the treatment of this

disease. AMP-activated protein kinase (AMPK), a hetero-
trimeric protein that plays a key role in regulation of
whole-body energy homeostasis, is one attractive drug
target. Two classes of commonly used insulin-sensitizing
drugs, thiazolidinediones and biguanides, exert their ben-
eficial effects, at least in part, by activating AMPK (1,2).

Natural products have been a rich resource for the
development of novel therapeutics used to treat a variety
of human diseases. We have recently reported that berber-
ine (BBR) displays insulin-sensitizing properties in rodent
models of insulin resistance and diabetes (3). BBR is
commonly used as a nonprescription oral drug in China to
treat gut infections and diarrhea with few side effects, and
its therapeutic potential for the treatment of diabetes (4)
and dyslipidemia (5) in humans has been reported. These
beneficial effects are related in part to the ability of BBR to
activate AMPK (3,6,7). Here we show that, similar to
metformin and rosiglitazone, BBR activates AMPK via
inhibition of respiratory complex I of the mitochondrion.

Despite its potent stimulation of AMPK in cell-based
assays, an important issue arising from our previous work
(3) is that considerably large oral doses (380–560 mg �
kg�1 � day�1) of BBR were required for beneficial meta-
bolic effects in rodents. Aiming to improve its therapeutic
efficacy, we designed a number of BBR derivatives and
show that one such derivative, dihydroberberine (dhBBR),
has markedly improved in vivo efficacy in the treatment of
insulin-resistant rodents.

RESEARCH DESIGN AND METHODS

Preparation of dihydroberberine. Details of the procedures used to pre-
pare dhBBR are included in a supplemental file available in an online appendix
at http://dx.doi.org/10.2337/db07-1552.
Cell experiments. Cell culture conditions for LKB1�/� mouse embryonic
fibroblasts (MEFs) and L6 myotubes were as described previously (3,8).
[3H]-2-deoxyglucose uptake was measured in L6 cells according to Cheng et al.
(7). For immunoblotting experiments, cell lysates were resolved by SDS-
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PAGE, transferred to polyvinylidene difluoride membranes, and immunoblot-
ted with antibodies specific for LKB1 (Santa Cruz Biotechnology, Santa Cruz,
CA), AMPK, pThr172-AMPK, acetyl-CoA carboxylase (ACC), and pSer79-ACC
(Cell Signaling Technology, Beverly, MA).
Animals. Male C57Bl/6J mice (6–8 weeks old) and male Wistar rats (250 g)
purchased from the Animal Resources Centre (Perth, Australia) were kept in
a temperature-controlled room (22 � 1°C) on a 12-h light/dark cycle with free
access to water. Animals were randomly assigned to receive either standard
control rodent diet or a high-fat diet (HFD) to generate insulin resistance
(9,10). Mice and rats were fed for 10 weeks and 4 weeks, respectively, and
based on pilot testing for dhBBR in mice, BBR and dhBBR were provided in
the HFD at a dose of 100 mg � kg�1 � day�1 for the final 2 weeks of feeding. All
experiments were carried out with the approval of the Garvan Institute Animal
Experimentation Ethics Committee, following guidelines issued by the Na-
tional Health and Medical Research Council of Australia.
Muscle mitochondrial isolation and respiration measurements. Methods
describing the mitochondrial isolation and respiration measurements are
provided in the supplemental file.
In vivo glucose metabolism. Glucose tolerance tests (2 g/kg glucose i.p.) in
mice and euglycemic-hyperinsulinemic clamps in rats (insulin infusion 0.25
units � kg�1 � h�1) were conducted as previously described (9,10). Tissue
triglyceride content was determined using a colorimetric assay kit (Roche
Diagnostics, Indianapolis, IN).
Pharmacokinetic analysis. Rats were fasted (12 h) and gavaged with 20
mg/kg BBR or dhBBR, and blood samples were obtained over the subsequent
24 h. Plasma concentrations of BBR and dhBBR were determined by liquid
chromatography–tandem mass spectrometry (LC-MS/MS) (11).
Statistical analysis. Results are presented as means � SE. One-way ANOVA
with Fisher’s protected least-square difference post hoc test was used to
assess statistical significance between groups. For respiration experiments,
the effect of drug treatments are given as a percentage of intra-individual basal
values (100%), with P values calculated by paired two-tailed t tests. P � 0.05
was regarded as statistically significant.

RESULTS

Role of LKB1 and Ca2�/calmodulin-dependent pro-
tein kinase kinase (CAMKK) in the action of BBR.
LKB1 and CAMKK� are two important upstream kinases
for AMPK. To determine if activation of AMPK by BBR
involves either of these kinases, we first examined the
effects of the relatively specific CAMKK inhibitor STO-609
(12) on BBR activation of AMPK in L6 myotubes. The Ca2�

ionophore ionomycin increased phosphorylation of
AMPK and its downstream target ACC, and this effect
was blocked by STO-609 (Fig. 1A). However, the in-
crease in phosphorylation of AMPK and ACC by BBR
was unaffected by STO-609, suggesting that CAMKK is
not the major AMPK kinase regulated by BBR in L6 cells
(Fig. 1A). To examine the role of LKB1 in the activation
of AMPK by BBR, we used LKB1�/� MEFs (Fig. 1B).
BBR caused a robust increase in AMPK and ACC
phosphorylation in cells lacking LKB1, as did the AMPK
activator AICAR (Fig. 1C). Interestingly, treatment of
LKB1�/� MEFs with STO-609 blocked the activation of
AMPK by ionomycin, 5-aminoimidazole-4-carboxamide-
1-�-D-ribofuranoside (AICAR), and BBR (Fig. 1C).
BBR inhibits mitochondrial respiration. We recently
reported that BBR increases the AMP-to-ATP ratio in L6
myotubes (7). To investigate whether these changes in
nucleotide levels may result from inhibition of cellular
respiration, oxygen consumption was examined in L6
myotubes. BBR dose-dependently inhibited respiration in
L6 myotubes, with an �50% inhibition at 15 �mol/l (Sup-
plementary Fig. 1). Metformin and rosiglitazone also dose-
dependently inhibited respiration in L6 myotubes, with
rosiglitazone displaying similar potency to BBR, while
metformin was substantially less potent (Supplementary
Fig. 1). We next examined whether the inhibitory effect of
BBR was manifest at the level of the mitochondria. BBR
produced a dose-dependent inhibition of oxygen consump-
tion in isolated muscle mitochondria with complex I–l-

inked substrate (pyruvate), but did not have a substantial
effect on complex II–linked respiration using succinate as
the substrate (Fig. 2A). A similar inhibitory pattern was
also observed in mitochondria for metformin and rosigli-
tazone (Fig. 2).
dhBBR displays improved in vivo efficacy compared
with BBR. Aiming to improve the in vivo efficacy of BBR,
we prepared a panel of BBR derivatives and initially tested
the effects of these derivatives on glucose uptake and
AMPK activation in L6 cells (7). Five of six derivatives had
no effect on glucose uptake (Supplementary Fig. 2) or
AMPK activation (data not shown). Strikingly, one deriv-
ative (dhBBR) displayed similar potency to BBR to stim-
ulate both glucose uptake and AMPK (Supplementary Fig.
2), as well as inhibit respiration in myotubes (Supplemen-
tary Fig. 1) and mitochondria (Fig. 2B). A structure-based
analysis (using Chemdraw ultra 10 software, http://www.
cambridgesoft.com/services) suggested that dhBBR would
likely display improved in vivo efficacy compared with
BBR because of its higher logP value (logP: 3.88 for dhBBR
and �0.92 for BBR) (13), and hence its effects were
examined in rodent models of insulin resistance.

In mice fed an HFD, treatment with dhBBR (100 mg � kg�1

� day�1) markedly reduced adiposity and improved glucose
tolerance, compared with HFD controls (Fig. 3). At the same
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FIG. 1. Effect of CAMKK inhibition and LKB1 deficiency on the
activation of AMPK by BBR. A: L6 myotubes were incubated for 30 min
with vehicle (veh) 1 �mol/l ionomycin (iono) or 10 �mol/l BBR, with or
without preincubation for 1 h with STO-609 (10 �g/ml). B: LKB1
expression in L6 myotubes and LKB1�/� MEFS. C: LKB1�/� MEFs were
incubated for 30 min with 1 �mol/l ionomycin, 2 mmol/l AICAR, or 10
�mol/l BBR, with or without preincubation for 1 h with STO-609 (10
�g/ml). Cells were lysed in 4 � SDS sample buffer, and equal amounts
of lysates were resolved by SDS-PAGE and immunoblotted with anti-
bodies specific for LKB1, phospho-AMPK-� (Thr172), total AMPK-�,
phospho-ACC (Ser79), and total ACC.
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dose, BBR had no effect on adiposity or glucose tolerance
(Fig. 3), whereas at a dose of 560 mg � kg�1 � day�1 (data not
shown), we observed the expected effects of BBR (3).

In HFD rats, treatment with dhBBR resulted in reduced
fat pad mass and tissue triglyceride levels compared with
HFD controls (Table 1). Whole-body insulin sensitivity,
measured as the glucose infusion rate during a hyperinsu-
linemic-euglycemic clamp, was 44% (P � 0.01) higher in
dhBBR-treated HFD rats compared with HFD controls,
although it was not fully restored to control levels (Table
1). Using glucose tracers, we observed that improvements
in whole-body insulin sensitivity in dhBBR-treated HFD
rats were largely due to improved uptake of glucose into
peripheral tissues, as evidenced by increased Rd and
tissue-specific uptake of [3H]-2-deoxyglucose in several
tissues (Table 1).

Pharmacokinetic analyses were conducted in rats to
determine if enhanced oral bioavailability underpinned the
improved in vivo efficacy of dhBBR over BBR. After oral
administration of 20 mg/kg BBR, we were unable to detect
BBR in the plasma. In contrast, dhBBR at the same oral

dose was rapidly detected in the plasma (Supplementary
Fig. 2), displaying a half-life (t1/2) of 3.5 � 1.3 h and a
maximum concentration (Cmax) of 2.8 � 0.5 ng/ml. Inter-
estingly, in rats gavaged with dhBBR, BBR was also
present in the plasma, displaying a longer t1/2 (9.6 � 2.1 h,
P � 0.05) and a greater Cmax (12.6 � 2.4 ng/ml, P � 0.01).

DISCUSSION

Here we show that BBR has a similar effect to metformin
and rosiglitazone to inhibit respiratory complex I, consis-
tent with previous studies (14–18). These data highlight
the importance of complex I as a diabetes target. Inhibi-
tion of complex I is likely the main mechanism by which
BBR activates AMPK, since we did not observe selective
activation of either CAMKK� or LKB1 by BBR. These
findings are consistent with a recent model proposing a
major role for AMPK regulation at the level of the AMPK
phosphatase in response to metabolic stress (19,20). Fi-
nally, we have also identified a novel BBR derivative that
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FIG. 2. Inhibition of oxygen consumption in isolated rat muscle mitochondria by BBR (A), dhBBR (B), metformin (C), and rosiglitazone (D).
Oxygen consumption rates were measured in mitochondria at 37°C using substrate combinations targeting respiratory complex I (5 mmol/l
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displays improved in vivo efficacy, thus paving a path for
future drug development in this area.

The use of LKB1�/� MEFs and the CAMKK inhibitor
STO-609 has provided novel insights into the actions of
BBR. We observed robust activation of AMPK in LKB1�/�

MEFs by BBR, an effect that could be blocked by pretreat-
ment with STO-609. Conversely in L6 myotubes, which
express both LKB1 and CAMKK�, we found that STO-609
was unable to block the activation of AMPK by BBR.
These findings suggest that in response to BBR, AMPK can
be activated via either LKB1 or CAMKK�. We also ob-
served activation of AMPK in LKB1�/� MEFs by the
adenosine analog, AICAR, with this effect also abrogated
by STO-609. Recently, it was proposed that in addition to
a direct allosteric effect, elevated AMP concentrations
activate AMPK indirectly by preventing dephosphorylation
of Thr172 by phosphatases (19,20). Hence, this model
predicts a permissive and/or redundant role for upstream
AMPK kinases in metabolic stress-induced AMPK activa-
tion, consistent with the present findings for BBR. Inter-
estingly, metformin and rosiglitazone appear to act in an
analogous manner (Fig. 2; 16–18). The therapeutic advan-
tage of diverse compounds targeting respiratory complex I
is not yet fully appreciated; however, it is noteworthy, in
this context, that BBR and metformin have been observed
to be beneficial for a broad spectrum of human diseases,
including diarrhea, cancer, inflammation, and diabetes
(2–4,21–24). We suspect that disturbances in cellular
energy homeostasis may be an early event contributing to
the therapeutic actions of these compounds.

A potential disadvantage of BBR as an in vivo compound
for treatment of diabetes is that we (3) and others (14) have
previously reported the need for relatively high doses in
rodents to achieve beneficial metabolic effects. In this regard,
our identification of a novel derivative that works with
substantially improved potency to BBR is a major step
forward. At 100 mg � kg�1 � day�1, dhBBR reduced adiposity
and improved glucose tolerance in HFD mice, whereas we
observed no effects of BBR at this dose. Furthermore, in HFD
rats, the beneficial effects of dhBBR at 100 mg � kg�1 � day�1

were of a similar magnitude to those previously reported for
380 mg � kg�1 � day�1 of BBR (3). Examination of the
structure of BBR reveals that it possesses an extremely flat
configuration, which is likely to have limited absorption
across the intestinal epithelia. However, derivatization to
dhBBR was predicted to open up the structure, making it
more amenable to uptake. Our pharmokinetics data were
consistent with this prediction, with dhBBR displaying im-
proved absorption compared with BBR. Intriguingly, our
data also revealed that once absorbed, dhBBR was rapidly
converted back to BBR, highlighting the fact that this is likely
the active moiety. These findings indicate that dhBBR is in
essence an effective vehicle for delivering BBR to the circu-
lation, substantially reducing the oral dose required for
beneficial metabolic effects. As BBR has been shown to
improve clinical symptoms in patients with type 2 diabetes
(4) and dyslipidemia (5), and undesirable side effects have
been reported for several popular anti-diabetic drugs (25),
dhBBR represents an attractive potential therapy for the
treatment of type 2 diabetes and other components of the
metabolic syndrome.
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Fat pad mass, tissue triglyceride levels, and metabolic parameters from hyperinsulinemic-euglycemic clamps in rats

Control HFD HFD dhBBR

Body mass (g) 349 � 7 367 � 5* 361 � 6
Epididymal fat pad (%) 1.05 � 0.04 1.94 � 0.11† 1.48 � 0.10†§
Inguinal fat pad (%) 1.04 � 0.07 2.28 � 0.16† 1.79 � 0.11†§
Muscle triglyceride (�mol/g) 3.0 � 0.3 5.1 � 1.0* 3.1 � 0.2‡
Liver triglyceride (�mol/g) 4.8 � 0.2 17.1 � 1.9† 9.4 � 1.4*
Glucose infusion rate (mg � kg�1 � min�1) 40.2 � 2.2 19.0 � 0.4† 27.4 � 1.9†§
Rd (mg � kg�1 � min�1) 38.4 � 1.9 23.2 � 0.5† 30.3 � 0.6†§
Hepatic glucose output (mg � kg�1 � min�1) �1.7 � 0.5 4.2 � 0.6† 2.8 � 1.7†
Rg�: red gastrocnemius 35.6 � 3.3 19.8 � 1.7† 34.9 � 7.9‡
Rg�: white gastrocnemius 15.2 � 2.7 5.7 � 0.7† 8.5 � 1.5*
Rg�: epididymal fat 1.8 � 0.2 1.3 � 0.1 2.1 � 0.4‡

Data are means � SE (n 	 5–12 per group). dhBBR was provided in the HFD (100 mg � kg�1 � day�1) for the final 2 weeks of high-fat feeding.
Fat pad weights are expressed as a percentage of body mass. Plasma levels of glucose and insulin were similar among the three groups during
the clamp (data not shown). Rg�, insulin-stimulated glucose uptake during the clamp (�mol/100 g � min). *P � 0.05, †P � 0.01 vs. control; ‡P �
0.05, §P � 0.01 vs. HFD.
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